Skip to main content

Gemini

Usage

import { Gemini, Settings, GEMINI_MODEL } from "llamaindex";

Settings.llm = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
});

Usage with Vertex AI

To use Gemini via Vertex AI you can use GeminiVertexSession.

GeminiVertexSession accepts the env variables: GOOGLE_VERTEX_LOCATION and GOOGLE_VERTEX_PROJECT

import { Gemini, GEMINI_MODEL, GeminiVertexSession } from "llamaindex";

const gemini = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
session: new GeminiVertexSession({
location: "us-central1", // optional if provided by GOOGLE_VERTEX_LOCATION env variable
project: "project1", // optional if provided by GOOGLE_VERTEX_PROJECT env variable
googleAuthOptions: {...}, // optional, but useful for production. It accepts all values from `GoogleAuthOptions`
}),
});

GoogleAuthOptions

To authenticate for local development:

npm install @google-cloud/vertexai
gcloud auth application-default login

To authenticate for production you'll have to use a service account. googleAuthOptions has credentials which might be useful for you.

Load and index documents

For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.

const document = new Document({ text: essay, id_: "essay" });

const index = await VectorStoreIndex.fromDocuments([document]);

Query

const queryEngine = index.asQueryEngine();

const query = "What is the meaning of life?";

const results = await queryEngine.query({
query,
});

Full Example

import {
Gemini,
Document,
VectorStoreIndex,
Settings,
GEMINI_MODEL,
} from "llamaindex";

Settings.llm = new Gemini({
model: GEMINI_MODEL.GEMINI_PRO,
});

async function main() {
const document = new Document({ text: essay, id_: "essay" });

// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document]);

// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});

const query = "What is the meaning of life?";

// Query
const response = await queryEngine.query({
query,
});

// Log the response
console.log(response.response);
}

API Reference